Wavelength resolved UV photodesorption and photochemistry of CO2 ice.
نویسندگان
چکیده
Over the last four years we have illustrated the potential of a novel wavelength-dependent approach in determining molecular processes at work in the photodesorption of interstellar ice analogs. This method, utilizing the unique beam characteristics of the vacuum UV beamline DESIRS at the French synchrotron facility SOLEIL has revealed an efficient indirect desorption mechanism that scales with the electronic excitations in molecular solids. This process, known as DIET--desorption induced by electronic transition--occurs efficiently in ices composed of very volatile species (CO, N2), for which photochemical processes can be neglected. In the present study, we investigate the photodesorption energy dependence of pure and pre-irradiated CO2 ices at 10-40 K and between 7 and 14 eV. The photodesorption from pure CO2 is limited to photon energies above 10.5 eV and is clearly initiated by CO2 excitation and by the contribution of dissociative and recombination channels. The photodesorption from "pre-irradiated" ices is shown to present an efficient additional desorption pathway below 10 eV, dominating the desorption depending on the UV-processing history of the ice film. This effect is identified as an indirect DIET process mediated by photoproduced CO, observed for the first time in the case of less volatile species. The results presented here pinpoint the importance of the interconnection between photodesorption and photochemical processes in interstellar ices driven by UV photons having different energies.
منابع مشابه
Photodesorption of ices I : CO , N 2 and CO 2 Karin
Context. A longstanding problem in astrochemistry is how molecules can be maintained in the gas phase in dense interand circumstellar regions at temperatures well below their thermal desorption values. Photodesorption is a non-thermal desorption mechanism, which may explain the small amounts of observed cold gas in cloud cores and disk mid-planes. Aims. This study aims to determine the UV photo...
متن کاملPhotodesorption of ices I : CO , N 2 and CO 2
Context. A long-standing problem in astrochemistry is how molecules can be maintained in the gas phase in dense interand circum-stellar regions. Photodesorption is a non-thermal desorption mechanism, which may explain the small amounts of observed cold gas in cloud cores and disk mid-planes. Aims. The aim is to determine the UV photodesorption yields and to constrain the photodesorption mechani...
متن کاملUV photodesorption of interstellar CO ice analogues: from subsurface excitation to surface desorption.
Carbon monoxide is after H(2) the most abundant molecule identified in the interstellar medium (ISM), and is used as a major tracer for the gas phase physical conditions. Accreted at the surface of water-rich icy grains, CO is considered to be the starting point of a complex organic--presumably prebiotic--chemistry. Non-thermal desorption processes, and especially photodesorption by UV photons,...
متن کاملPhotodesorption of Ices Ii: H2o and D2o
Gaseous H2O has been detected in several cold astrophysical environments, where the observed abundances cannot be explained by thermal desorption of H2O ice or by H2O gas phase formation. These observations hence suggest an efficient non-thermal ice desorption mechanism. Here, we present experimentally determined UV photodesorption yields of H2O and D2O ice and deduce their photodesorption mech...
متن کاملPhotochemistry of polycyclic aromatic hydrocarbons in cosmic water ice II. Near UV/VIS spectroscopy and ionization rates
Context. Mid-infrared emission features originating from polycyclic aromatic hydrocarbons (PAHs) are observed towards photon dominated regions in space. Towards dense clouds, however, these emission features are quenched. Observations of dense clouds show that many simple volatile molecules are frozen out on interstellar grains, forming thin layers of ice. Recently, observations have shown that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Faraday discussions
 
دوره 168 شماره
صفحات -
تاریخ انتشار 2014